Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
2.
Sci Rep ; 12(1): 15749, 2022 09 21.
Article in English | MEDLINE | ID: covidwho-2036881

ABSTRACT

The use of real-time genomic epidemiology has enabled the tracking of the global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), informing evidence-based public health decision making. Ukraine has experienced four waves of the Coronavirus Disease 2019 (COVID-19) between spring 2020 and spring 2022. However, insufficient capacity for local genetic sequencing limited the potential application of SARS-CoV-2 genomic surveillance for public health response in the country. Herein, we report local sequencing of 103 SARS-CoV-2 genomes from patient samples collected in Kyiv in July-December 2021 using Oxford Nanopore technology. Together with other published Ukrainian SARS-CoV-2 genomes, our data suggest that the third wave of the epidemic in Ukraine (June-December 2021) was dominated by the Delta Variant of Concern (VOC). Our phylogeographic analysis revealed that in summer 2021 Delta VOC was introduced into Ukraine from multiple locations worldwide, with most introductions coming from Central and Eastern European countries. The wide geographic range of Delta introductions coincides with increased volume of travel to Ukraine particularly from locations outside of Europe in summer 2021. This study highlights the need to urgently integrate affordable and easily scaled pathogen sequencing technologies in locations with less developed genomic infrastructure, in order to support local public health decision making.


Subject(s)
COVID-19 , Nanopore Sequencing , COVID-19/epidemiology , Humans , SARS-CoV-2/genetics , Ukraine/epidemiology
3.
Nat Commun ; 13(1): 4784, 2022 08 15.
Article in English | MEDLINE | ID: covidwho-1991598

ABSTRACT

Regional connectivity and land travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding in the early pandemic to more regional seeding for the travel restrictions period. We show that land travel, particularly freight transport, drove introduction risk during the travel restrictions period. High regional connectivity and land travel also drove Jordan's export risk. Our findings emphasize regional connectedness and land travel as drivers of transmission in the Middle East.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Middle East/epidemiology , Pandemics/prevention & control , Travel
4.
Science ; 377(6609): 951-959, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1962061

ABSTRACT

Understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in 2019 is critical to preventing future zoonotic outbreaks before they become the next pandemic. The Huanan Seafood Wholesale Market in Wuhan, China, was identified as a likely source of cases in early reports, but later this conclusion became controversial. We show here that the earliest known COVID-19 cases from December 2019, including those without reported direct links, were geographically centered on this market. We report that live SARS-CoV-2-susceptible mammals were sold at the market in late 2019 and that within the market, SARS-CoV-2-positive environmental samples were spatially associated with vendors selling live mammals. Although there is insufficient evidence to define upstream events, and exact circumstances remain obscure, our analyses indicate that the emergence of SARS-CoV-2 occurred through the live wildlife trade in China and show that the Huanan market was the epicenter of the COVID-19 pandemic.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Seafood , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , China/epidemiology , Humans , SARS-CoV-2/isolation & purification , Seafood/virology , Viral Zoonoses/epidemiology , Viral Zoonoses/transmission , Viral Zoonoses/virology
5.
Science ; 377(6609): 960-966, 2022 08 26.
Article in English | MEDLINE | ID: covidwho-1962060

ABSTRACT

Understanding the circumstances that lead to pandemics is important for their prevention. We analyzed the genomic diversity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) early in the coronavirus disease 2019 (COVID-19) pandemic. We show that SARS-CoV-2 genomic diversity before February 2020 likely comprised only two distinct viral lineages, denoted "A" and "B." Phylodynamic rooting methods, coupled with epidemic simulations, reveal that these lineages were the result of at least two separate cross-species transmission events into humans. The first zoonotic transmission likely involved lineage B viruses around 18 November 2019 (23 October to 8 December), and the separate introduction of lineage A likely occurred within weeks of this event. These findings indicate that it is unlikely that SARS-CoV-2 circulated widely in humans before November 2019 and define the narrow window between when SARS-CoV-2 first jumped into humans and when the first cases of COVID-19 were reported. As with other coronaviruses, SARS-CoV-2 emergence likely resulted from multiple zoonotic events.


Subject(s)
COVID-19 , Pandemics , SARS-CoV-2 , Viral Zoonoses , Animals , COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , Computer Simulation , Genetic Variation , Genomics/methods , Humans , Molecular Epidemiology , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Viral Zoonoses/epidemiology , Viral Zoonoses/virology
6.
J Infect Dis ; 2022 Jun 30.
Article in English | MEDLINE | ID: covidwho-1908839

ABSTRACT

BACKGROUND: Monitoring the emergence and spread of SARS-CoV-2 variants is an important public health objective. We investigated how the Gamma variant was established in New York City (NYC) in early 2021 in the presence of travel restrictions that aimed to prevent viral spread from Brazil, the country where the variant was first identified. METHODS: We performed phylogeographic analysis on 15,967 Gamma sequences sampled between March 10th through May 1st, 2021, to identify geographic sources of Gamma lineages introduced into NYC. We identified locally circulating Gamma transmission clusters and inferred the timing of their establishment in NYC. RESULTS: We identified 16 phylogenetically-distinct Gamma clusters established in NYC (cluster sizes ranged 2-108 genomes); most of them were introduced from Florida and Illinois and only one directly from Brazil. By the time the first Gamma case was reported by genomic surveillance in NYC on March 10th, the majority (57%) of circulating Gamma lineages had already been established in the city for at least two weeks. CONCLUSIONS: Although travel from Brazil to the US was restricted from May 2020 through the end of the study period, this restriction did not prevent Gamma from becoming established in NYC as most introductions occurred from domestic locations.

7.
Nat Commun ; 13(1): 3645, 2022 06 25.
Article in English | MEDLINE | ID: covidwho-1908172

ABSTRACT

Recombination is an evolutionary process by which many pathogens generate diversity and acquire novel functions. Although a common occurrence during coronavirus replication, detection of recombination is only feasible when genetically distinct viruses contemporaneously infect the same host. Here, we identify an instance of SARS-CoV-2 superinfection, whereby an individual was infected with two distinct viral variants: Alpha (B.1.1.7) and Epsilon (B.1.429). This superinfection was first noted when an Alpha genome sequence failed to exhibit the classic S gene target failure behavior used to track this variant. Full genome sequencing from four independent extracts reveals that Alpha variant alleles comprise around 75% of the genomes, whereas the Epsilon variant alleles comprise around 20% of the sample. Further investigation reveals the presence of numerous recombinant haplotypes spanning the genome, specifically in the spike, nucleocapsid, and ORF 8 coding regions. These findings support the potential for recombination to reshape SARS-CoV-2 genetic diversity.


Subject(s)
COVID-19 , Superinfection , Genome, Viral/genetics , Humans , New York City/epidemiology , Recombination, Genetic , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
PLoS One ; 17(5): e0267853, 2022.
Article in English | MEDLINE | ID: covidwho-1846931

ABSTRACT

BACKGROUND: Prior to direct-acting antivirals (DAAs), HCV incidence rose among men who have sex with men (MSM) living with HIV infection in Germany despite high hepatitis C virus (HCV) treatment rates. We establish a HCV elimination modeling framework to evaluate whether existing treatment rates can achieve the World Health Organization (WHO) incidence target among MSM living with HIV in Germany. METHODS: To evaluate progress towards HCV elimination in Germany, we adapted a previously published HCV transmission model among MSM living with diagnosed HIV. We modelled HCV incidence and prevalence until 2030 (relative to 2015) under existing treatment and DAA scale-up and explored potential impacts of disruptions in treatment and behavioral risk reduction due to the COVID-19 pandemic. RESULTS: Continuing current treatment rates will result in stable HCV incidence among MSM living with HIV in Germany between 2015-2030. The WHO HCV incidence target is achievable under DAA scale-up to 100% treatment combined with treatment of those previously diagnosed and untreated (at a rate of 15%/year) and would result in greater reductions with early treatment (3 vs 6 months) reducing incidence from 4.0/100person-years to 0.8/100person-years by 2030. A 12-month disruption to HCV treatment (20% reduction) and risk behaviors (25%,50%,75% reduction) during the COVID-19 pandemic would result in a 15% relative increase in total HCV incidence in 2030 compared to that expected under the status quo. CONCLUSIONS: HCV elimination among MSM living with HIV in Germany requires further DAA scale-up among those newly diagnosed combined with efforts to treat those previously diagnosed but untreated. Prospective monitoring will establish whether Germany is on track for HCV microelimination.


Subject(s)
COVID-19 , HIV Infections , Hepatitis C, Chronic , Hepatitis C , Sexual and Gender Minorities , Antiviral Agents/therapeutic use , COVID-19/epidemiology , Germany/epidemiology , HIV Infections/drug therapy , HIV Infections/epidemiology , Hepacivirus , Hepatitis C/drug therapy , Hepatitis C/epidemiology , Hepatitis C, Chronic/drug therapy , Homosexuality, Male , Humans , Incidence , Male , Pandemics , Prospective Studies
10.
Cell ; 184(20): 5189-5200.e7, 2021 09 30.
Article in English | MEDLINE | ID: covidwho-1401295

ABSTRACT

The independent emergence late in 2020 of the B.1.1.7, B.1.351, and P.1 lineages of SARS-CoV-2 prompted renewed concerns about the evolutionary capacity of this virus to overcome public health interventions and rising population immunity. Here, by examining patterns of synonymous and non-synonymous mutations that have accumulated in SARS-CoV-2 genomes since the pandemic began, we find that the emergence of these three "501Y lineages" coincided with a major global shift in the selective forces acting on various SARS-CoV-2 genes. Following their emergence, the adaptive evolution of 501Y lineage viruses has involved repeated selectively favored convergent mutations at 35 genome sites, mutations we refer to as the 501Y meta-signature. The ongoing convergence of viruses in many other lineages on this meta-signature suggests that it includes multiple mutation combinations capable of promoting the persistence of diverse SARS-CoV-2 lineages in the face of mounting host immune recognition.


Subject(s)
COVID-19/epidemiology , Evolution, Molecular , Mutation , Pandemics , SARS-CoV-2/genetics , Amino Acid Sequence/genetics , COVID-19/immunology , COVID-19/transmission , COVID-19/virology , Codon/genetics , Genes, Viral , Genetic Drift , Host Adaptation/genetics , Humans , Immune Evasion , Phylogeny , Public Health
12.
Cell ; 184(19): 4848-4856, 2021 09 16.
Article in English | MEDLINE | ID: covidwho-1363914

ABSTRACT

Since the first reports of a novel severe acute respiratory syndrome (SARS)-like coronavirus in December 2019 in Wuhan, China, there has been intense interest in understanding how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in the human population. Recent debate has coalesced around two competing ideas: a "laboratory escape" scenario and zoonotic emergence. Here, we critically review the current scientific evidence that may help clarify the origin of SARS-CoV-2.


Subject(s)
SARS-CoV-2/physiology , Animals , Biological Evolution , COVID-19/virology , Humans , Laboratories , SARS-CoV-2/genetics , Zoonoses/virology
13.
Syst Biol ; 71(2): 426-438, 2022 02 10.
Article in English | MEDLINE | ID: covidwho-1358488

ABSTRACT

Phylogenetic trees from real-world data often include short edges with very few substitutions per site, which can lead to partially resolved trees and poor accuracy. Theory indicates that the number of sites needed to accurately reconstruct a fully resolved tree grows at a rate proportional to the inverse square of the length of the shortest edge. However, when inferred trees are partially resolved due to short edges, "accuracy" should be defined as the rate of discovering false splits (clades on a rooted tree) relative to the actual number found. Thus, accuracy can be high even if short edges are common. Specifically, in a "near-perfect" parameter space in which trees are large, the tree length $\xi$ (the sum of all edge lengths) is small, and rate variation is minimal, the expected false positive rate is less than $\xi/3$; the exact value depends on tree shape and sequence length. This expected false positive rate is far below the false negative rate for small $\xi$ and often well below 5% even when some assumptions are relaxed. We show this result analytically for maximum parsimony and explore its extension to maximum likelihood using theory and simulations. For hypothesis testing, we show that measures of split "support" that rely on bootstrap resampling consistently imply weaker support than that implied by the false positive rates in near-perfect trees. The near-perfect parameter space closely fits several empirical studies of human virus diversification during outbreaks and epidemics, including Ebolavirus, Zika virus, and SARS-CoV-2, reflecting low substitution rates relative to high transmission/sampling rates in these viruses.[Ebolavirus; epidemic; HIV; homoplasy; mumps virus; perfect phylogeny; SARS-CoV-2; virus; West Nile virus; Yule-Harding model; Zika virus.].


Subject(s)
COVID-19 , Zika Virus Infection , Zika Virus , Humans , Models, Genetic , Phylogeny , SARS-CoV-2
14.
Nat Commun ; 12(1): 4886, 2021 08 09.
Article in English | MEDLINE | ID: covidwho-1349666

ABSTRACT

Wide-scale SARS-CoV-2 genome sequencing is critical to tracking viral evolution during the ongoing pandemic. We develop the software tool, Variant Database (VDB), for quickly examining the changing landscape of spike mutations. Using VDB, we detect an emerging lineage of SARS-CoV-2 in the New York region that shares mutations with previously reported variants. The most common sets of spike mutations in this lineage (now designated as B.1.526) are L5F, T95I, D253G, E484K or S477N, D614G, and A701V. This lineage was first sequenced in late November 2020. Phylodynamic inference confirmed the rapid growth of the B.1.526 lineage. In concert with other variants, like B.1.1.7, the rise of B.1.526 appears to have extended the duration of the second wave of COVID-19 cases in NYC in early 2021. Pseudovirus neutralization experiments demonstrated that B.1.526 spike mutations adversely affect the neutralization titer of convalescent and vaccinee plasma, supporting the public health relevance of this lineage.


Subject(s)
COVID-19/virology , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , COVID-19/epidemiology , Genome, Viral , Humans , Models, Molecular , Mutation , New York/epidemiology , Phylogeny , SARS-CoV-2/genetics , Software , Spike Glycoprotein, Coronavirus/genetics
15.
Science ; 372(6540): 412-417, 2021 04 23.
Article in English | MEDLINE | ID: covidwho-1199748

ABSTRACT

Understanding when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged is critical to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the failure of early containment and mitigation efforts for COVID-19. We used a coalescent framework to combine retrospective molecular clock inference with forward epidemiological simulations to determine how long SARS-CoV-2 could have circulated before the time of the most recent common ancestor of all sequenced SARS-CoV-2 genomes. Our results define the period between mid-October and mid-November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province, China. By characterizing the likely dynamics of the virus before it was discovered, we show that more than two-thirds of SARS-CoV-2-like zoonotic events would be self-limited, dying out without igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for detecting highly contagious pathogens with moderate mortality rates.


Subject(s)
COVID-19/epidemiology , COVID-19/virology , Genome, Viral , Pandemics , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Animals , COVID-19/transmission , China/epidemiology , Computer Simulation , Evolution, Molecular , Genetic Fitness , Humans , Models, Theoretical , Phylogeny , Retrospective Studies , Viral Zoonoses
16.
bioRxiv ; 2020 Nov 24.
Article in English | MEDLINE | ID: covidwho-955722

ABSTRACT

Understanding when SARS-CoV-2 emerged is critical to evaluating our current approach to monitoring novel zoonotic pathogens and understanding the failure of early containment and mitigation efforts for COVID-19. We employed a coalescent framework to combine retrospective molecular clock inference with forward epidemiological simulations to determine how long SARS-CoV-2 could have circulated prior to the time of the most recent common ancestor. Our results define the period between mid-October and mid-November 2019 as the plausible interval when the first case of SARS-CoV-2 emerged in Hubei province. By characterizing the likely dynamics of the virus before it was discovered, we show that over two-thirds of SARS-CoV-2-like zoonotic events would be self-limited, dying out without igniting a pandemic. Our findings highlight the shortcomings of zoonosis surveillance approaches for detecting highly contagious pathogens with moderate mortality rates.

17.
Science ; 370(6516): 564-570, 2020 10 30.
Article in English | MEDLINE | ID: covidwho-760215

ABSTRACT

Accurate understanding of the global spread of emerging viruses is critical for public health responses and for anticipating and preventing future outbreaks. Here we elucidate when, where, and how the earliest sustained severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission networks became established in Europe and North America. Our results suggest that rapid early interventions successfully prevented early introductions of the virus from taking hold in Germany and the United States. Other, later introductions of the virus from China to both Italy and Washington state, United States, founded the earliest sustained European and North America transmission networks. Our analyses demonstrate the effectiveness of public health measures in preventing onward transmission and show that intensive testing and contact tracing could have prevented SARS-CoV-2 outbreaks from becoming established in these regions.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Phylogeny , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Air Travel , COVID-19 , China/epidemiology , Computer Simulation , Contact Tracing , Coronavirus Infections/prevention & control , Evolution, Molecular , Genome, Viral , Germany/epidemiology , Humans , Italy/epidemiology , Mass Screening , Mutation , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , SARS-CoV-2 , Washington/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL